Chordal graphs and their clique graphs

Philippe Galinier, Michel Habib and Christophe Paul

LIRMM
UMR 9928 UNIVERSITE MONTPELLIER II/CNRS
161, Rue Ada
34392 Montpellier cedex 5 France
email: paul@lirmm.fr

Abstract. In the first part of this paper, a new structure for chordal
graph is introduced, namely the clique graph. This structure is shown
to be optimal with regard to the set of clique trees. The greedy aspect
of the recognition algorithms of chordal graphs is studied. A new greedy
algorithm that generalizes both Maximal cardinality Search (MCS) and
Lexicographic Breadth first search is presented. The trace of an execution
of MCS is defined and used in two linear time and space algorithms:
one builds a clique tree of a chordal graph and the other is a simple
recognition procedure of chordal graphs.

Introduction

Since chordal graphs have no chordless cycle of length more than 3, they can be
considered as a generalization of trees. In [9], chordal graphs have been consid-
ered as the intersection graphs of subtrees of a tree. Chordal graphs are often
represented by a clique tree (see [9, 19]). This is a structure which translates
most of the information contained in a chordal graph. The structure of clique
tree does not only appeared in the graph theory litterature, but in the context of
the acyclic database schemes [6, 1] and in the context of sparse matrix compu-
tations too [3, 12, 14]. This is probably why some results have been rediscovered
independently several times. Some results of this paper are contained in [3], but
we present here a unifying graph theoretical point of view.

Chordal graphs can also be characterized using perfect elimination orderings
(PEO) [16]. A vertex is simplicial if and only if its neighbourhood is a complete
subgraph. An elimination ordering zi, z2, ..., x,, is perfect if and only if each z;
is simplicial in the subgraph induced by z;, ..., .

Several greedy recognition algorithms of chordal graphs are known. The most
famous are the Lexicographic Breadth First Search (BFS for short) [17] and
the Maximum Cardinality Search (MCS for short) [20]. Chordal graphs can be
represented with clique-trees (see for example [19]). The linear recognition of
chordal graphs involves two distinct phases: the execution of MCS or BFS in
order to compute an elimination ordering and a checking procedure to decide
whether this elimination ordering is perfect (PEO).

In the first part of this paper, a new structure namely the clique graph is
introduced. Some graph properties of this structure are studied with regard to

clique trees. And the clique graph is justified as being the optimal structure con-
taining all clique trees of a chordal graph. In the second section, an explanation
of the greedy aspect of the recognition algorithms, MCS and BFS, is given. The
strong properties of the clique graph allow a simple algorithm which computes
maximum weighted spanning tree. It is shown that such an algorithm general-
izes both MCS or BFS. In fact, in [3] MCS has yet been compared to Prim’s
algortihm [15]. This correspondence gives a better knowledge of the greediness
of chordal graph recognitions and implies new proof for these algorithms. In
the last part of this paper, we present two linear algorithms: one for building a
clique-tree, and the other for the recognition of PEO. We define the trace of an
elimination ordering as the mark level of vertices when they are numbered by
MCS. Both algorithms are based on the study of the increasing sequences of the
trace induced by the elimination ordering . This study produces a new and sim-
plier understanding of the recognition of chordal graphs. These two algorithms
can also be adapted for BFS.

1 The clique graph of a chordal graph

One of the most widely used representations of chordal graphs is the clique
tree defined above (see [9]). In this section, we will introduce and study a new
structure called the cligue graph of a chordal graph. We will show the ties between
clique graphs and the clique trees. In [19], the clique tree is studied with regard
to the clique intersection graph, which can be seen as the cliques hypergraph
[2]. The clique graph defined here is a subgraph of the clique intersection graph.
We will prove that a clique graph can be seen as the minimal graph containing
all clique trees. All graphs considered here are supposed to be connected, if not
each connected component has to be considered separately.

Definition 1. Given an undirected graph G = (V, E), and two non-adjacent
vertices a and b, a subset S C V is an a, b-separator if the removal of S separates
a and b in distinct connected components. If no proper subset of S is an a, b-
separator then S is a minimal a, b-separator. A (minimal) separator is a set of
vertices S for which there exist non adjacent vertices @ and b such that S is a
(minimal) a, b-separator.

It is well known [8], that the minimal separators of a chordal graphs are
complete subgraphs. Here is the definition of the clique graph of a chordal graph.

Definition 2. Let G = (V, E) be a chordal graph. The clique-graph of G, de-
noted by C(G) = (V., E., u), with u: E. — N, is defined as follows :

1. The vertex set V., is the set of maximal cliques of G;

2. The edge (Cy,Cs) belongs to E. if and only if the intersection C; N Cs is a
minimal a, b-separator for each a € (C; \ Cs) and each b € (Cs \ Cy);

3. The edges of (C;, C;) € V. are weighted by the cardinality of the correspond-
ing minimal separator S;; : u(C;, C;) = |Si;-

Let C; and C; be two maximal cliques of a chordal graph. Hereafter, we
will note S;; = C; N C; if and only if S;; is a minimal a, b-separator for each
a € (C;\Cj) and each b € (C;\C;). Let us now prove several structure properties
of the clique graph.

Triangle Lemma Let (C1,C>,Cs) be a 3-cycle in C'(G) and let Si2, Si3, Sas
be the associated minimal separators of G. Then two of these three minimal
separators are equal and included in the third.

Proof: Assume that two minimal separators among Sis, S13, S23 are incompa-
rable for the inclusion order. Let Si> and Si3 be these minimal separators. Then
there exist two vertices « and y such that ¢ € (S12 \ S13) and y € (S13 \ Si2).
Since Cy, Cy, C3 are distinct maximal cliques, Cy \ C3 and C5\ Co are not empty.
The vertices = and y do not belong to Cy N Cs. For each a € (Cy \ C3) and each
b € (C3\Cy), the path a, z,y, b exists and is not cut by C2NC3. A contradiction,
therefore C> N C5 is not a a, b-separator and the edge between C> and C3 does
not exist.

Therefore if there exists a 3-cycle in C'(G), then the three minimal separators
on the edges can be linearly ordered by inclusion. Without loss of generality,
assume that Si2 C Siz3 C Ss3. Therefore S;3 € C; and Si3 C Cs. And so
S13 C (C1NCy). This leads to a contradiction : S13 C S12. We have proved that
S12 = S13 C Sa3. O

Note that the converse is false. Let C, C3, C5 be three maximal cliques such
that (01,02) € E. and (01,03) € F,, then S12 = S13 does not imply that the
edge (C2,C3) € E.. But the following property stands.

Lemma3. Let C(G) be the clique graph of the chordal graph G. Let Cy,C>,Cs
be three maximal cliques such that (C1,Cs) € E. and (C1,C3) € E., then Si12 C
513 = (02,03) c E,.

Proof: By the triangle lemma, S1» C Si3 (strict inclusion) implies that Cy N
C5 = Si5, otherwise there is no edge between C; and Cs. By definition S5 is a
minimal separator for all @ € Cy \ Cy and b € Cy \ Cs. Since S12 C Si3, every
vertex ¢ € C3 \ C2 is in the same connected component of G[V — Si3] than b.
And so Cy N C3 is a minimal separator for every vertices like a and c. O

The clique graph of a chordal graph is not always chordal. Let us now examine
the structure of clique trees in full details. After recalling the definition, we will
show that a kind of chordality property of the clique tree stands.

Definition4. Let G = (V, E) be a chordal graph. A clique tree of G is a tree
Te = (C, F) such that C is the set of maximal cliques of G and for each vertex
x € E, the set of maximal cliques containing x induces a subtree of T¢.

Lemmab. Let T be a clique tree of the chordal graph G and let Cy and C,
be two adjacent mazimal cliques. Then C1 N Cy is a minimal separator for all

aECl\Cg andbECz\Cl.

Proof: If ¢4 N Cs is not an a, b-separator, then there exists a path between a
and b which avoids Cy NC5. Every edge of this path belongs to a maximal clique.
Therefore a and b are contained in some of these maximal cliques. But T is a
tree, hence the set of maximal cliques containing a or b can not induce a subtree
of T. So C1 N Cs is an a, b-separator and is necessarily minimal otherwise C; or
C5 should not be a clique. |

Weak Triangulation Lemma Let Py, = [C4,...,Ct], k > 4, be a path in a
clique tree T of a chordal graph G. If (Cy,C}) is an edge of C(G), then either
(Co,Ck) or (C1,Ck—1) is an edge of C(G).

Proof:

Foreach 1 <i < k-1, S;+1 is a a, b-minimal separator for each a € C;\Ci+1
and each b € Ci41 \ C;. Then by lemma 5 each S; ;41 is a x,y-separator for
z € C1\Cz and y € Cj \ Cr—1, but not necessarily minimal. Since (Cy, C) € V¢,
Sik is a minimal z,y-separator. Hence S must be included in all S; ;1. The
triangle lemma proves the existence of a chord in the cycle C,...,Cy in C(G).
And so the triangle lemma applied iteratively, proves that either (C2,C}) or
(Cy,Ck—_1) is an edge of C(G). i

In other words, the above lemma shows that any path of a clique tree induces
a chordal subgraph of C(G). Next theorem shows ties between clique trees and
maximum weighted spanning trees of C(G).

Theorem 6. Let G = (V, E) be a chordal graph and C(G) its clique graph. Let
T = (V., F) be a spanning tree of C(G). Then T is a clique tree of G if and only
if T is a mazimum weighted spanning tree of C(G).

Proof: Since the set of nodes of T and C(G) are the same, we just need to
prove that the set of nodes containing a vertex z € E induces a subtree of T if
and only if T' is a maximum weighted spanning tree of C(G).

= Assume that T is not a maximum weighted spanning-tree of C(G). Then
there exists a pair of maximal cliques, C; and Cj, adjacent in C(G) and not
in T such that Sj; strictly contains a minimal separator of the unique path
P;; between C; and C; in T'. Let Sy; be such a minimal separator on Fj;.
Let x € (Si; \ Sw)- So & does not belong to at least one of the two nodes Cj,
and C. Hence, the set of nodes containing the vertex x is not a subtree of
T and so T is not a clique-tree of G.

< Assume that T is a maximum weighted spanning-tree of C(G). Let C; and
C; be two non-adjacent maximal cliques of T" containing the vertex z € V.
Assume that x does not belong to any maximal cliques on the unique path
in T between Cz and Cj, Pij.
Consider the subgraph G’ of G induced by the maximal cliques of P;;. The
subgraph G’ is a chordal graph. In [16], it is proved that each vertex of a
chordal graph is either a simplicial vertex, or belongs to a minimal separator.
Simplicial vertices belong to only one maximal clique. Therefore there exists
a minimal separator S of G' such that x € S. Since no maximal clique apart
from C; and C; contains z, S must be equal to C; N C;. Hence the edge

(C;,Cj) € E., and the maximal cliques of P;; induces a cycle. Let y € C;\ S
and z € C; \ S be two vertices, then S is a minimal z, y-separator. If no
minimal separator on P;; is strictly included in S, we can easily extract a path
in G' between y and z which is not cut by S. This leads to a contradiction.
Therefore there exists S’ on P;; such that S’ C S. Hence T is not a maximum
spanning tree. So x belongs to any maximal clique on F;;, and 7' is a clique
tree.

The next theorem yields a kind of optimality for a clique graph.

Theorem 7. Let C(G) be the clique graph of the chordal graph G. Then each
edge of C(G) belongs to at least one clique Lree.

Proof: Let T be a clique tree of G. And let C; and C}, two adjacent maximal
cliques in C(G) but not in T'. Let Py be the path between C; and Cy, in T'. By the
weak triangulation lemma, either the edge (Cy, Ci—1) or (Cs, C},) exists. Assume
that (C,Cr—_1) exists. Then C;, Cy, Cr_1 is a 3-cycle, and so the triangle lemma
can be applied. Since T is a maximum spanning tree, (C, Cy) is not the biggest
edge of the 3-cycle. So S = S1,,—1. Applying the weak triangulation lemma
iteratively, we can find an edge E in P;; with the same label than (Ci,Cy).
Therefore changing E by (Cy,Cy) in T yields to a new clique tree. We have
proved that every edge of C'(G) can belong to a clique tree. a

The previous theorem proves that the edges belonging to the clique inter-
section graph and not to the clique graph, never belong to a clique tree. Since
every edges of a clique tree are minimal separator, clique graphs are the minimal
structures containing all clique trees.

2 Greedy aspects of recognition algorithms

Let G = (V,E) be a graph with n vertices. When an elimination ordering is
computed by BFS or MCS, another procedure must verify if it is a perfect
elimination ordering in order to prove that G is triangulated. BFS or MCS
computes the elimination ordering in the reverse order. In this section, we will
give an explanation of the greedy aspect of the two linear recognition algorithms
of chordal graphs: MCS and BFS. The main result proves that both algorithms
compute a maximum spanning-tree of the clique graph.

Let us examine how MCS and BFS visit a chordal graph. We just give the
proof for MCS, but this proof can be easily transformed for BFS. When MCS
chooses a new vertex z, then the mark level of this vertex, noted mark(z), is
maximum over all unnumbered vertices. The set of vertices who has marked z
will be denoted by M (z).

Lemma8. Let G = (V, E) be a chordal graph. In a execution of MCS or BFS
on G, mazimal cliques of G are visited conseculively.

Proof: Let a the PEO computed by MCS. Let N = {z,,...,z;} be the set of
numbered vertices at some step. Then z; is simplicial in G|z, ...,x;], and so z;
belongs to a unique maximal clique (see [16]). Let us prove that x;_; belongs to
a new maximal clique if and only if mark(z;—1) < mark(z;).

< Assume that x;_; and z; belong to the same maximal clique. Since z; is
simplicial in G[zp, ..., z;], all the vertices of M (z;) belong to this maximal
clique. Hence mark(z;_1) = mark(z;) + 1.

= Assume that z;_; belongs to a new maximal clique. Since z; was a ver-
tex with the biggest level mark over all unnumbered vertices when it was
choosen, mark(z;) > |M(x;—1) \ {z;}|. But there exist at least one vertex
of the maximal clique containing z; in G[zy, ..., ;] which does not mark
x;_1, otherwise z; 1 does not belong to a new maximal clique. Therefore
mark(z;—1) < mark(z;).

If we define the trace of « as the sequence of mark levels of the vertices when
they are numbered, each maximal clique is represented by an increasing sequence.
We can conclude that the maximal cliques are visited consecutively. A similar
argument holds for BFS. O

Now the remaining question is, in which ordering the maximal cliques of the
input chordal graph are visited by both algorithms? The edges of the clique
graph of a chordal graph G = (V, E) represent all possible transitions from a
maximal clique to another one.

In fact a clique graph is a very particular weighted graph. Therefore there
are many ways for computing maximum weighted spanning trees in C(G). The
following algorithm is one of them. We will prove that BFS and MCS can be
seen as special case of this algorithm. In order to find such a general framework,
in the following algorithm we assume that the edges of C'(G) are labelled with
the minimal separators (until now it was only required that the edges of C(G)
to be weighted by the cardinality of the minimal separator).

Algorithm 1: Maximum weighted spanning-tree of clique graph

Data: A clique graph C(G)

Result: A maximum spanning-tree of C(G)

Choose a maximal clique C

for i =2 ton do
choose a maximally (under inclusion) labelled edge adjacent to C, ..., Ci_1
to connect the new clique C;

Theorem 9. Let G be a chordal graph, then algorithm 1 compules a mazimum
weighted spanning tree (i.e. a clique tree) of the clique graph C(G).

Proof: Let T; be the tree built by algorithm 1 at step ¢. We now prove by
induction the following invariant: T; can be completed as a mazimum spanning

tree of C(G).

Clearly the property holds for T;. Let us suppose by induction, it holds for
T;_1 and that (C;,C;), with j < i is the edge chosen by the algorithm at step i.
Therefore it exists a maximum spanning tree T' containing T;_ ;.

If (C;,C;) belongs to T, we have finished. Else it exists a unique path p =
[C; = Di,...,Dy = C;] from C; to C; in T. Let Dp, be the last vextex of
C1,...,C;_1 belonging to . algorithm 1 insures that A = label[(Dp,, Dp+1)] does
not contain B = label[(C;,C;)]. If 3b € B — A, then b € C; and therefore by the
definition of clique tree, b must also belong to all cliques in u, a contradiction.

Therefore A = B, and a maximum spanning tree 7' can be obtained from T
by exchanging the edges (Dp, Dp+1) and (Cj, C;), which finishes the proof.

O

In [3], it is proven that MCS corresponds to Prim’s algorithm. It is easy to
see that Prim’s algorithm is a special case of the algorithm 1. The next corollary
proves the same for BFS.

¢ b A
A PEO computed by MCS:
b,c,d,e, g, f,a
c ¢ MCS and Prim visit the clique in the ordering:
C1,C02,C5,C4
g
G = (V, E) a triangulated graph
Cy 1 Cs Cy €1 Cs

G ¢ the clique graph of G The maximum weighted spanning-tree
of G¢ generated by Prim’s algorithm,

Fig. 1. An execution of MCS on a chordal graph and the corresponding execution of
Prim’s algorithm on its clique graph

Corollary 10. MCS and BFS compute mazimum spanning irees of CC(QG).

Proof: It suffices to show that MCS and BFS are particular cases of algo-
rithm 1. Let C1,...Cr_1 be the visited cliques and z1,...,z; 1 be the numbered
vertices. When z; is numbered, a new clique C}, is visited. Since x; is simplicial in
Glz1, ..., x;], its neighbourhood is complete and strictly included in a clique Cj,
1 > j > k — 1. Therefore the labelof all edges connecting C} to C1,...C_1 must

be include in the label of (C;, C;). In order to connect, Cj the maximum edge
is choosen. This is what algorithm 1 does, since a amximum weighted edge has
necessarily a maximal label. Similarly for BFS the lexicographic search insures
also a maximal labelled edge to be chosen at each step. O

3 Linear algorithms on the clique trees

In this section, we will first present a linear time and space algorithm which
computes a clique tree of G will be presented. This algorithm based on MCS. A
similar algorithm was presented in [3] We define the trace of an PEO «a computed
by MCS as the sequence of mark level of the vertices when they are numbered
(see figure 2). In the second part, an extended version of the first algorithm for
the recognition of PEQO is presented. The reader should note that exactly the
same work can be done with BFS.

« 5
f 3 Lo Ly
9 o o
¢ d 1| 1, Ly
0|
9 b a e ¢ d g f

G = (V,E) a triangulated graph A trace of a, the PEO computed by MCS

02 3 04
@ 03

The clique-tree associated to a

o @

Fig. 2. An execution of MCS and the associated clique-tree

By the lemma 8, each maximal clique of G corresponds to a strictly increasing
sequence of the trace. Let us recall and define some notations. The level mark of

a vertex will be denoted by mark(z), and the set of vertices who have marked x
is M(z). At each vertex z, we associate C(z), the first maximal clique discovered
in «a containing z.

Since maximal cliques are visited one after the other, MCS gives an ordering
of the maximal cliques: the j-th maximal clique reached by MCS will be noted
C;. At each maximal strictly increasing sequence of marks, L; in the following
(see figure 2), corresponds C;. Note that the set of L; is a partition of V. Since
a is a PEO, for every z;, M(z;) C C(x;). Hence if z; € Lj, then C(z;) =
L; U M(ZEZ) = Cj.

Let z; be the first vertex discovered in L;. Then for every vertex z; € Lj,
M(z;) € M(zy). Henceforth, mark; will denote the last vertex which has
marked all vertices of Lj, i.e last(z;).

Lemmall. Let G be a chordal graph. Let T be a tree whose nodes are the
mazimal cliques of G, and such that an edge between the mazimal cliques C;
and Cy, (k < j) exists if and only if mark; € Ly. Then T is a clique-tree of G.

Proof: Let z; be the first vertex discovered in L;. Let = be a vertex of M (z;).
Let us prove that every maximal clique C on the path between C(z) and C; in
T, contains the vertex z. We have to consider two cases:

1. C(x) and C; are adjacent (i.e C(z) = C}): trivial.

2. If C(z) and C; are not adjacent, then & # mark; (i.e. z is not the last
vertex which has mark all vertices of Cj). Let us prove that 2 has marked
all vertices of Cj. Since « is a PEO and since a(z;) < min(a(z), a(mark;),
the edge (x, mark;) € E. Hence x € M(mark;), and so x belongs to Ck.

This proves that the maximal cliques containing x form a subtree of T'. Hence
T is a clique-tree of G. a

We are now able to present an extended version of MCS which computes
on-line the clique-tree associated to the elimination order.

Theorem 12. The algorithm 2 computes a PEQO and its assciated clique-tree
if and only if the input graph G = (V,E) is chordal. The complexity of this
algorithm is O(n +m) where n = |V| and m = |E|.

Proof: If the alogrithm 2 computes a PEO and a clique-tree, then the input
graph is trivially chordal. The algorithm 2 is an extended version of MCS, hence
if G is chordal, the computed elimination ordering is perfect. By lemma 11, the
step 1 builds a clique-tree if G is chordal.

Let us have a look at the size of a clique tree. First of all, when a vertex is
marked by MCS, this mark corresponds to an edge. Hence the size of all mark
sets is O(m), the number of edges in G. Since there is at most n increasing
sequences, T' contains at most n nodes and so O(n) edges.

Let us examine the size of the set of nodes in 7'. Since the vertices of minimal
separators belong to several maximal cliques, the size of the nodes set is bigger
than n. Let M(z) be the set of marks of x, where z is the first vertex of an

Algorithm 2: Maximum Cardinality Search and Clique-Tree

Data: A graph G = (V,E)
Result: If the input graph is chordal: a PEO and an associated clique-tree
T = (I, F) where I is the set of maximal cliques

begin
each vertex of X is initialized with the empty set
previousmark = —1
j=0

fori=mn to 1 do

choose a vertex z not yet numbered such that |mark(z)| is maximum
1 if mark(z) < previousmark then

j=7+1

create the maximal clique C; = M (z) U {x}

create the tie between C; and C(last(x))

else
2 L Cj = Cj U {CU}
3 for each y neighbour of x do

M(y) = M(y) U {z}
mark(y) = mark(y) + 1
last(y) = x

previousmark = mark(z)
z is numbered by ¢

Clx) =j

end

increasing sequence L;. The node associated to x by the algorithm 2 is M (2)UL;.
But M(z) corresponds to the edges between vertices of M (z) and . Since every
duplicated vertex belongs to the mark set of the first vertex of an increasing
sequence, each of them can be associated an edge. Therefore the sum of the
cardinality of the nodes of T is smaller than n + m, and the space complexity is
O(n +m).

All the operations of step 1, 2 and 3 can be done in constant time. Hence
this algorithm has the same time complexity as MCS: O(n + m). a

It is well known that MCS computes a PEO if and only if the graph is
chordal. Similarly the results of the previous algorithm stand if and only if the
algorithm 2 works on a chordal graph, MCS computes a PEO if and only if the
graph is chordal. Hence the natural following question is: how the trace of an
elimination ordering computed by MCS can be used for the recognition of chordal
graph. The following algorithm checks whether the output of the algorithm 2 is
a clique tree or not in linear time and space complexity. Since MCS computes
a PEO if and only if the input graph is chordal, then the algorithm 2 builds a
clique tree if and only if the elimination ordering is perfect. And so the next
algorithm can be seen like a recognition procedure for chordal graphs.

Let T be the result of the algorithm 2. The following two lemmas exhibit the
properties of simplicial vertices in T'. The figure 3 give an illustration of these
properties.

The trace of the elimination ordering
a

The input graph G = (V, E)

o Ao
C3 is not a clique: the mark set
M(d) # (Cs \ {d})

Hence, G is not a triangulated graph.
Cs

Fig. 3. An execution of the algorithm 3 on a 5-cycle

Lemmal3. Let x; be the first vertex of the increasing sequence of marks L;.
Then x; is simplicial if and only if M (z;) C Crather-

Proof: Assume that M (2;) C Ctather then the neighbourhood of z; is a clique.
If it is not the case, then at least two neighbours of x; are not in the same clique.
Therefore they are not adjacent. Hence its neighbourhood is not a clique. O

Lemma14. Let L; = {x;,...,x} be an increasing sequence of marks such that
x; is simplicial in G[X,,...,x;]. Then xy, with i < k < h, is simplicial if and
only if M(xp) = M (z—1 U {zt_1}.

Proof: Let us assume that z;, the first vertex of the increasing sequence, is
simplicial. Then its neighbourhood is a clique. It is clear that x;_; is simplicial
if M(x;—1) = M(x;)U{z;}. It is the same for each zy, i < k < h. If M(xy) =
M (zg—1 U{xg_1}, then zy is simplicial if and only if 2y is simplicial. Since z;
is simplicial, the property follows. O

These two previous lemmas can lead to an on-line recognition algorithm
of chordal graphs. When MCS chooses an unnumbered vertex, one of the two
conditions according to the type of this vertex has to be tested. Let us give an
idea of such an algorithm. Assume that like in the algorithm 2, the used data
structures are sorted lists. Checking whether the first vertex of an increasing
sequence is simplicial, can be done just by testing the inclusion of a set in another
one. The complexity is in the size of the biggest set. This size can be in O(n),
and the test can be done O(n) times. Hence such an algorithm, using linear
data structure, has a time complexity in O(n?). The time complexity can be
improved, but then matrix should be used. And so the space complexity is not
linear in this case.

We present now a sketch of the recognition algorithm, which works on the
whole T'. This algorithm can be seen like a parallel version of the previous idea.
Since the procedure works on the whole tree T, all the inclusion tests in a
given clique can be done at the same time. These inclusion tests are done by
the procedures test — simpliciality — first(C;,S) and test — simpliciality —
next(C;, S). These procedures correspond respectively to the lemmas 13, 14.

Algorithm 3: Recognition of Chordal Graph
Data: The result 7' = (C, F) of the algorithm 2 as sorted lists
Result: Check whether T is a clique-tree
begin
for each node C; of T do

S < the set of sons of C; in T

if not test-simpliciality-first(C;, S) then

L return 7T is not a clique-tree, hence G is not chordal

if not test-simpliciality-nezt(C;, S) then
L return 7T is not a clique-tree, hence G is not chordal

return 7T is a clique-tree, hence G is chordal
end

Let us study more precisely the complexity of both procedures test—simpliciality.

The data structures are sorted lists respecting the elimination ordering. Each
node of T is defined by two sorted lists: one for its vertex set, and the other for
the corresponding increasing sequence. A sorted list of its mark set is associated
to every vertex.

The procedure test — simpliciality — first(C;, S) checks at the same time,
if the mark set of the first vertices of the increasing sequences corresponding to
the sons of C; are include in C;. Since these sets are sorted lists, they are visited
just once. Each list has a current element. The idea is to start at the beginning
of each list. If all current element of the mark sets are less or equal to the current
element of C;, then the current element of C; move to the following one. The
current elements of the mark sets ore moved to the following if it is equal to the

current element of C;. If one of the current elements of the mark sets is smaller
than the current element of C;, then the test returns false. The end of the test
is reached successfully if all the mark sets are visited before the end of C;.

The procedure test — simpliciality — next(C;,S) checks whether the mark
set of vertices, which are not the first one of an increasing sequence, are prefixes
of the node containing it.

Theorem 15. The recognition algorithm 3 checks whether G is chordal in linear
time and space complexity O(n + m).

Proof: Since both procedures test-simpliciality correspond to the lemmas 13,
14, it is clear that the algorithm returns true if and only if the input T is a
clique-tree.

The procedure 3 visits the data structure just once and always uses elemen-
tary operations. But in the previous section, we have shown that the size of
a clique tree is O(n + m). We can conclude that the space complexity of the
algorithm 3 is O(n 4+ m). Therefore the time complexity is also O(m +n). O

4 Conclusion

The clique graph of a chordal graph G introduced and studied in the first part, is
shown to be the minimal structure containing all clique trees of G. The properties
of the clique graph imply a simple algorithm for maximum spanning-trees which
cannot be applied for general graphs. As in [3], MCS is compared to Prim’s
algorithm. Many versions of greedy algorithm for computing a maximal weighted
independant set in a matroid are known [18, 11]. It could be worthwhile in this
context to consider Kruskal’s or Boruvka’s alogrithm [4]. Hence, this matroidal
approach can justify many versions of recognition algorithms of chordal graphs.
It can be very helpful for various generalizations.

Hence this paper presents a new and unified regard on the MCS and BFS
algorithms. The trace of these algorithms executions translates the behavior of
the algorithm in the input graph. The study of this trace induces a simple way to
compute the associated clique tree and the recognition of chordal graphs. This
approach, studying the trace of algorithm like MCS and the underlying structure,
can be very helpful for various generalizations of elimination orderings, see [13, 7],
or generalizations of chordal graphs, see [10, 5].

Acknowledgement

We would like to thank J.X. Rampon for drawing our attention to references [3,
13] and R.H. Mohring for discussions on the BFS algorithm.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. Assoc. Comput., 30:479-513, 1983.

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C. Berge. Hypergraphs. North Hollands, 1989.

J.R.S. Blair and B. Peyton. An introduction to chordal graphs and clique trees.
preprint.

O. Boruvka. On a minimal problem. Prac Moravske Predovedecke Spolecrosti, 3,
1926.

A. Brandstaddt, F.F. Dragan, V.D. Chepoi, and V.I Voloshin. Dually chordal
graphs. In Proceedings of the 19th Inter. Workshop on Graph-Theoretic Concept
in Computer Science, 1993. WGI3.

P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205-212,
1974.

E. Dahlhaus, P.L. Hammer, F. Maffray, and S. Olariu. On domination elimination
orderings and domination graphs. Technical Report 27-94, Rutgers University
Center of Operations Research, P.O. Box 5062, New Brunswick, New Jersey, USA,
August 1994.

G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Uni. Hamburg 25, 1961.

F. Gavril. The intersection graphs of a path in a tree are exactly the chordal
graphs. Journ. Comb. Theory, 16:47-56, 1974.

Ryan B. Hayward. Weakly triangulated graphs. Journal of Combinatorial theory,
39:200-209, 1985. Serie B.

B. Korte, L. Lovész, and R. Schrader. Greedoids. Number 4 in Algorithms and
Combinatorics. Springer Verlag, 1991.

J.G Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse
matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10(6):1146-1173,
November 1989.

S. Olariu. Some aspects of the semi-perfect elimination. Discrete Applied Mathe-
matics, 31:291-298, 1991.

B. Peyton. Some applications of clique trees to the solutions of sparse linear sys-
tems. PhD thesis, Clemson University, 1986.

R.C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 1957.

Donald J. Rose. Triangulated graphs and the elimination process. Journal of
Mathematical Analysus and Applications, 32:597-609, 1970.

Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal of Computing, 5(2):266-283, June
1976.

P. Rosenstielh. L’arbre minimum d’un graphe. Theory of Graphs, 1967. P. Rosen-
stielh, editor, Gordon and Breach, New York.

Y. Shibata. On the tree representation of chordal graphs. Journal of Graph The-
ory, 12:421-428, 1988.

R.E. Tarjan and M. Yannakakis. Simple linear algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergaphs.
SIAM Journal of Computing, 13:566-579, 1984.

This article was processed using the ITEX macro package with LLNCS style

